STUDY MODULE DESCRIPTION FORM					
Name of the module/subject Electric Power System Operation		Code 1010311371010316898			
Field of study Electrical Engineering	Profile of study (general academic, practical) (brak)	Year /Semester 4 / 7			
Elective path/specialty Electric Power Systems	Subject offered in: Polish	Course (compulsory, elective) obligatory			
Cycle of study:	Form of study (full-time,part-time)				
First-cycle studies	full-time				
No. of hours		No. of credits			
Lecture: 15 Classes: - Laboratory: -	Project/seminars:	15 3			
Status of the course in the study program (Basic, major, other) (university-wide, from another field)					
(brak) (b		(brak)			
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		3 100%			
Technical sciences		3 100%			

Responsible for subject / lecturer:

Dr inż. Ireneusz Grządzielski

email: email: ireneusz.grzadzielski@put.poznan.pl

tel. tel. 61 665 2392 Wydział Wydział Elektryczny Piotrowo 3A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Possesses basic knowledge of the theory of electrical circuits, electrical machines, electric power engineering and electrical power generation
2	Skills	Has effective self-study ability in the domain of the chosen specialization, is able to integrate the knowledge acquired at the credited courses
3	Social competencies	Is aware of the need to develop his knowledge and competencies, is ready to undertake the cooperation and team work

Assumptions and objectives of the course:

Getting knowledge of the electric power system operation under steady operating- computations of the symmetrical and asymmetrical steady short-circuit conditions in the power system, practical use of the short-circuit computation programs SCC and DAKAR.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Has general knowledge of automatics and automatic control fundamentals know the criteria and principles of selection power protection automation devices [K_W22++]
- 2. Has knowledge of the electric power system fundamentals including structure and operation states of the electric power sectors: generation, transmission and distribution, knows basic rules of the operation and maintenance of the electric power system elements [K_W24 +++]
- 3. Has knowledge of the electric power engineering development trends in the EU integrated electric power system as well as rules of its safe operation [K_W25++]

Skills:

- 1. Can elaborate the engineer task completion?s documentation and describe the task?s results [K_U07++]
- 2. Can choose suitable technique and use measuring equipment (analog or digital) to measure the basic measurable magnitudes typical for engineering [K_U14+]
- 3. Can properly use and maintain electrical devices according to the general requirements and technical docu [K_U23+++]

Social competencies:

1. Is aware of the weight and understands different aspects and effects of the electric engineer?s activities including those related to the environmental impact and regarding the responsibility for the undertaken decisions - [K_K02++]

Faculty of Electrical Engineering

Assessment methods of study outcomes

Lectures:

- 1. Assesment of the knowledge and skills shown at the written and oral examinations,
- 2. Continuous assessment during courses (bonus for activity and perception quality).

Project

- 1.On-line assessment of the preparation to the design tasks,
- 2. Evaluation of the completed design task.

Course description

Lectures: Transient states in the electric power system. Calculations of the steady short-circuit conditions in the electric power system? non-symmetrical short-circuit analysis using symmetrical component method, models of the system elements for symmetrical components.

Project: includes the design tasks from the scope of the knowledge handed over at the lectures in the semester 6 and 7.

Basic bibliography:

- 1. Kremens Z., Sobierajski M.: Analiza systemów elektroenergetycznych. WNT, Warszawa, 1996.
- 2. Kacejko P., Machowski J.: Zwarcia w systemach elektroenergetycznych. WNT, Warszawa, 2002.
- 3. Poradnik Inżyniera Elektryka . t.3. WNT, Warszawa 2005

Additional bibliography:

- 1. Cegielski M.: Sieci i systemy elektroenergetyczne. PWN, Warszawa, 1979.
- 2. Kończykowski S., Bursztyński J.: Zwarcia w układach elektroenergetycznych. WNT, Warszawa, 1965.

Result of average student's workload

Activity	Time (working hours)
1. participation in lecture courses	15
2. participation in project classes	15
3. participation in discussions related to lectures	5
4. participation in discussions related to project	5
5. preparation to project classes	5
6. elaborate to project	10
7. preparation to examination	10
8. taking an examination	3

Student's workload

Source of workload	hours	ECTS
Total workload	68	3
Contact hours	43	2
Practical activities	25	1